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SI MPLIFIE D POINT AND INTERV AL ESTIMATION
FOR REMOVAL TRAPPING

Andrew P. Soms

O 1. Introduction

A thorough d i scuss ion  of the removal trapping method of est imating

an ima l  and insect  populations , together with limitations, is given in [6],

pp . l8~~-6. It is pointed out in [4] that  this method is particularly suited

for insect populations. Briefly , there are assumed to be m organisms

in some fixed area , k tra pping or sweeping period s, k > 2 , and each organ-

i’~m is a s sumed  to have a constant  probability p of being captured in any of

the k period s, independent of the other organisms (The organisms are

not released when captured). If the trapping probability is p, then , as

pointed out by Moran [5], p. 308 , the Joint density of the n1, 1 < i < k

the number of organisms trapped in each of the period s, is

= s , ,  V s . < m ]  = 
m! 

k P
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I
where 0 < p < I . The above is seen to be a mu lt inom i a l  d i s t r ibu t ion ,

~:ith k ± I categories , and para meters m and p. = p( l_ p) h l
, I < i < k

and 
~k+l 

= (1_ ~ ) k 
- = 1 - ~~ p(l -p) ’~~ . It is desired to es t imate

m and p and give asymptot ica l l y  exact confidence Intervals .  In [5] a

method based on ma ximum likelihood is proposed , which is elaborated

upon by Zippin [7J . In addition to rep lacing m !  by Stirling ’ s approxi-

mation , the effect of which is not clear , bot h Moran [5] and Zippin [7]

state that  the usual  regularity conditions for the j oint asymptotic normality

of the ma ximum likelihood est imators are not satisfied in this case (in

addit ion to ot her assumptions , it i s assumed that the parameters being

e stimated , m and p, remain constant , which is not true here , si nce

the asy mptotic behavior is for fixed p as m —
~ ~~‘) ,  and then they pro-

ceed in the hope that somehow a just if icat ion may be produced without

giving it. Further , even if these difficulties are neglected , the esti mating

eq uations are either implicit , requiring iteration , or after some approxi-

mations , require charts. Here two theoretically Justifiable methods are

discussed , both based on the limiting distribution of the multinornial ,

which give the estimates explicitly as functions of n1, .. 
~ 

rik . The

first is a modified method of moments and the second is based on regression

estimates.
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~?. The Modified Moment Estimates

Since En . /En . 1  = 1 - p = q , 2 < i < k, eq uat ing expectations to

the observed val ues gives n / n . 1 = - = . Note that this is  def ined

only if n~~1 > n , . To minimize this effect it is reasonable to take the

geometric mean of the k - 1 est imates to obtain the estimate

= I - = (—i —
~~ 

. . .  
k

)
l/ ( k- l )  

(
k 

)
l/( k~~l)

r 1 r
~k~ l

a nd this is the estimate to be considered here — note that it fai ls  to exist

only if nk > n 1, a n event which will be shown to have l imiting probability
k ko . Since E(E n ,) = m ( l - ( l -p )  ), the moment est imate rc~ of m is

k
~~ n i

‘~ 1
=

Consider now the problem of asymptotically exact confidence Inter-

vals — a reasonable assumpt ion Is that p stays constant and m -~~ ~o

The asymptotic distributions of and i~ will be obtained by using two

results  — the j oint asymptotic normality of n = (n 1, . 
~~~~ ~~~~ 

and a resu lt

given in Anderson [1], pp . 7 6-7.  It is well known that as (p 1, . . ., p 1 )

stays constant and m —
~~ ~~~

n -mp .I ~ , l < i < k )  ~~ N (0 , R) , (2 . 1)

(mp~q . ) 2

means convergence in distribution),  where

— 3 —
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R = fp ~ J, 
~ 

= 1 and for i � j , = -(P 1P~/(q .q~)) 2

(s ee , ~~~. g. Johnson and Kotz , f 3 J , p. 284) recall that here p
1 = p(1~ p)

14

1< I < k (also for not at iona l  convenience p
1 = p, o~ = 1 - p1 = q), and

he nce it suff ices  to keep p constant .  The result cited in Anderson is:
Let f ( x )  be a funct ion with f i r s t  and second derivat ives exist ing in a
neighborhood of x = b , b = (b 1,. . . , bk ) a fi xed vector , and suppose
\ n ( U ( n ) - b )  ~ N(O , T) . Then

\ f l ( f ( U ( n ) ) - f ( b ) ) ~~ N (O ,~~~
T
~ b )

where ~ = (~~~~~~~, . . . , )g . The asymptotic distr ibution of 1 -
will now be obtained . it follows from (2. 1) that

m(p~q .)  2
) - (p ./ q .) 2 , I < i < k )  ~ N(0 , R) , (2.  3)

where R = [p .
3 1, = 1, and for i � J , p~ = _ ( P~~P~ /(q.~~~~) )2  . Take

f( x )  to be

____ 
1/(k-l)

-

f( x ) = 
_ _ _  . (2 .4)

~x1~/p 1q
1 J

— I IIn all th at fol lows , b = ((p
1
/q

1
) 2 , . . , (P~~/~~~~ )’ ) . Then , using (2. 2) ,

- f ( b ) )  = 

~~~~~~~~~ 
- (1 ) )  

W

N(0, ( 1 P
)
Z (

~ + 
1 k ;1 

+ 2) N (0,cr~ ) ,

since

-4-
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= ~(l
z
(k~ 1)) q(q p) +

af k 1 k 1 1 (2.5)
( l ’( k — l ) )  q(( 1— pq — 

)/ ‘(pa 
— 

))
~~~

and 1’ R~ = . There fore also
b b p

~~~~ (~~~
- p) ~ N(0,~~~) ,

l/ (k -l) A

where p 1 - (n
k
/n

l
) , or , equivale ntly, p is asymptotically

2 A

N(p,~~~ ’m) . Using  the same technique on in , let

_____ 
k/(k-l)

k i f  x j p q \  \
g( x ) = (

~~ 
x . ( p q . ) ? )/ ( 1 -  k k k ) . (2. 6)

1 1 1  

~ x1~,T~~q~ / /
Then

= (p . q .) 2 / ( l_ q k ) fo r 2  < i <  k-i

= ( (pq) 2  - (k/(k-1))q (q/p) 2)/(l-q ) , ( 2 . 7)

1

= ((P~~~~~~
) 2  + (k/(k~ l)) q(p~q~)2/p)/(l~q

k
)

Since g(b) = 1, by (2 .2)

~Jrn (i~/m-l)~~ N(O ,~~~~
T
~~b

)

where ‘i’’ = ~~~~~ , . . . , ~
_
~a 

~ . In order to evaluate
b ax a x b

~~~~

‘ T
~~b, ip t a ’ = ((p

1
q
1
)2 , . . . , (P

~~~~ k
)

2
)
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and b - ( - ( k  (k~ 1))( 1~ p)
k

(q p)~ , 0,. . . , 0, (k / ( k - l ) ) ( 1- p ) (~~~:~~)~ /~ ) Th~~r.

~ = ~~‘~~~~~ j 2~~Th - bTb , and after some algebra,

2 k+l k k-ibTb = (k (k- i ) )  (q /p)(q + pg + 1) ,

a’Tb = 0

k k 2a Ta = 1 - g - (l-q

Hence 
~ b~~~b 

= ( (k /(k~ l ) ) 2(q k+l
/p) (l+pq

k
~~+q

k
) ~ q

k
(1 0

k
))/(1 q

k
)
Z 

= a-
2

So \ / r n ( p-~ )~~ N(0,a-
2 ) and (~~-m)/~T~ ~ N(0,a-

2
) . Since ~ -~ 

p

and ~ /m —~ 1 in prob ab il ity, a-~ 
— a-

2
, a~ — a~ in probability (o-

~ 
and

are obtained from and a-
2 

by replacing p by p, q by E )  and

the limiting distribution of both ~~~~~~~~~~~~~~~~~~~~~~~~ and (~~~m)/(o~,~~~2 ) is

the standard ized normal , and therefore asymptotically exact (marginal)

i-a confidence intervals for p and m are

~ ± z a - ,~/r~~ ,

p. A 2

m ± z a - A ma m

where z is the upper l00a~~ perce ntile of the standardized normal. A

Monte Carlo example is now given to i l lustrate the asymptotic theory .

Three cases were considered: p = .4 , k = 3, and m 100 , 200 , and 400 .

In each case 1000 random samples (using computer generated random numbers)

were taken and for each sample the point estimates and confidence inter-

vals calculated . Two coverage relative frequencies were computed — the

relati ve frequency Cl of the estimate lying within ± a- and ± Za- of the

true val ue, a nd the relative frequency CZ of the estimated confidence

in terval covering the true parameter  value — the lat ter  is , of cou rse , of

.6-
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the gre ates t  intere st .  The resul ts  are given in Table 1. Here a- is the

th~~~r~ t ica l  s tand ard devia t ion  ( s t .  dev. ) and is the standard deviat i ~ n

es t imated  from a sample.

1. Monte Carlo Resul ts  for 1000 Samples

a. p

Si mple Sample
p in Mean a- st. dev. C1(±!a-) Cl(±2a-) C2(±l~ ) C2(±2o-)

1 100 - 397 . 092 . 090 .68 . 96 .70 . 97

4 200  . 399 . 065 ~~~ . 68 . 96 . 68 . 96

.4 400 . 40 1  .046 .045 .70 .96 .70 .96

b. m

4 100 105 .0 13 . 7 22, 1 .69 .92 .77  .9 2
.4  200 204 .1  19.4  22 . 3 .69  . 9 3  . 7 3  .93

.4 400 403 .7  27 . 5 28. 8 .69  . 94  .69 .94

An alternative procedure to using ~ in the confidence intervals is

to cor rect for bias in the point estimate (e. g. ,  for m = 100 , 5. 0 is sub-

t racted from the estimate and this is considered to be the new estimate)

and to u se the sample standard deviation s (here based on 1000 random

sa mples) .  As might be expected , this results in slightly conservative

interval s. The result s are given in Table 2 , based on 1000 s imulat ions

in each case. In practice the sample estimates would be used as the true

values in the simulation.

-7-
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~~. Coverages with Bias Substracted

when Sample Standard Deviation is Used

a. p

p m Cl(±s)  Cl (±2s)  CZ (±s)  C2 (±Z s)

. 4  103 .68 .96 .70 .97

.4  200 .68 .96 .6f. .96

.4  400 .70 .96 .7 0  .96

b. in

. 4  1 0 0  .6 1 .93 .89 .97 .

.4  200 . 6 5  .94 . 7 3  .96

. 4  4 03 .67 . 95  . 69 .96

Someti mes before the trapping experiment is be gun , a p eli minary

est imate of p is available. In this case k , the number of t r apping period s,

can be chosen so as to minimize the varianc e of p — because of the im-

portance of p in this method of estimation this is a reasonable optimality

criterion. The function to be minimized , apart from multiplicative con-

sta nts , Is f(k)  l/ (k_ l) Z (l+l/q
k _ l

) . The minimum is obtained by setting

the derivative eq ual to 0, the res ultant equation being

q
Z 

+ 1 = (-I n q/2)z

z = k - 1 . Table 3 gIve s the nearest integer to the exact minimum value ,

which is readily obtained by iteration , as a function of selected q

-8-



3. Opt imum k Val ues

k

.95  -14

22

. 85  15

.80 11

. 70 7

.60 5

. 5 0  4

The customary statistic used to test the adequacy of the model is

Z = 
~ 

- 

~~~
)
2
/(rnP

1
), where = ~(l .~~) 1 1  

. It is not at all clear ,

in this or , of cou rse, the max imum l ikel ihood case , tha t Z has an

asymptotic (p fixed, m -~ ~~~) x
2
distribution with k - 2 degrees of

freedom (d. f . ) ,  since the usual regularity condition s (see [2], pp. 500-1,

506) are not satisfied . The empirical approach given here consists of

using (2. 2) to obtain the expected value of the limiting distribution of Z

and the n to fit  a x
2 distrib ution (as is done with good results in fitting

the d istr ibu tion of sums of x
2 random variables) by estimating the d. f .

using the parameter estimates. The observed value of z is then compared

to the upper l00a~~ percen tile of the fitted x
2 ( using interpolation on the

d. f., since in general the fitted d. f. will not be integral). Specifically,

cons ider

f,(x) = x (p ,q 1) 7 - g(x ) ( l  - f ( x ) )  ( f (x  )) 1~ l

-9-
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-

1 ( x )  nd ; ( :~~ ) ~ ~iv ~ n by (2. () ~~ ( 2 .  ‘j ) ,  s~~o t i y - ~ 7.

~ç ~ th - ~ t f . ( b )  - 0 thus f r’ rr: ( 2 .  2 ( ,

~~~~~~~~~ (n~ 
~~~~~~~~~~~~~~ 

. . . , n , / (m(~ : ~ )~~) -~
‘
~~f~ u )

= \~~~( ( n . - r n p~ 
i i

) , 
~~ ~~( U , a-~~) , (2 .  

~
- )

2 
f . ( x )

v.h~ r~ r . = 
~~~~~~ 

~~~~~~~~~~ 
~~~~~~ 

( 
‘~x 1 

• J~ 
)~~ -

Using (2. 5) and (2.7) and the chain ~~lo , an expression for can  be

o bt a i n H , e. ;.,

~f.(x ,)  —
1 1 — Dg(x )  i - i

~Jx • 
)~~ = (p jqj

)? _ (~~~ )~~ pq , Z < i < k - 1

~nd similarly for the other derivatives. Even though explicit expressions

do not appear practical , a-~ is easily evaluated by means  of a short

co mputer program. Since (~~i/m) 2 — 1 and 
~~~

. -
~~ 

p in probability , it

follows fro m (2. 8) that

1 2
- mp~ )/(mp )2 - N(0 , a- ./ ’p . )

~. ~~~~~~ — l  2 A ~.and therefore the asymptotic mean of Z = (n. - mpq ) /(mp.) is

= ~~~ a-~ /p~ . Replacing the parameters p. and q, by their estimates

p~, q ,  in ~ gives the es t imated d. f. of the distribution of Z , and using

these d. f. a cut -off point for the adequacy of fit test  can be obtained

fro m tables.

-10- 
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3. Regression E s t i m at e s

1’h~ r~~th yi of m o m e n t s  given above depend s on the “ extreme ”

~~. 1u~~s ~~~ ~k 
and there fore  in cases where the t r app ing  period s

r~ too . -;h rt and hence the da ta  show considerable f luc tua t ion , it may  be

~) r e f r r : b 1e t- ~; u s~ an e s t i mat e  of p depending on all  the data .  As sug-

ge sted in {
~I, a simple check is to plot n . aga ins t  i on semi- log  paper

and see whether  the plot approximates  a s t ra ight  l ine.  If yes , the method

of moments  with its a t tendant  computa t ional  s impl ic i ty  can be used , and

if no , then the regress ion method discussed below may he used.

It is pointed out in [5] that  log En . = log ~.i. lie on the straight  line

log 
~~~

, = I l og ( l -p )  - log( l -p )  + log p + log in , ( 3 . 1)

but t h i s  method then is d i smissed  in [5] by saying that the usua l  assump-

t ions  of regress ion theory are not satisfied.  Here a different  approach is

taken — namely,  the point estimator of p suggested by regression theory

is used but then , in pl ace of the usual  regression theory, the li mit ing

d i s t r ibu t ion  is obtained from (2. 2) .  The regression equation suggested

by ( 3 .  1) is

Iog n . = i ~~ + a + c ~, l < i< k

where ~ = log(l-p)  (to any base) , e a consta nt , and the error ter m

which will  be of no interest  here. The least square s est imate ~ of ~ is

k k
A ‘ç l . k+ 1 V k+l Zp = ~~~ (log n .)( i  - — ..... )/ (‘ - —

~~
--) .

1 1

-11-
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Since i~ = ( k ) ( k  * l ) ( 2 k  ~~~~~~

= ~~~ (log n .)(i - ~~~~)/ (k(k 2 -l)/ l2 )

Then the co rres pond ing es tima tor 1 - of 1 - p is

l_ ~~=~~~~n~ i 
, ( 3 . 2 )

wher e c~ = (i  - ( k+ l ) / 2 ) / ( k ( k
2

-l) / l2)  . In order to show that ( 3 . 2 )  is

consis tent  for p and to obtain its asymptotic variance , it is j ust as

easy to consider general est imate s of 1 - p of the form ( 3 . 2 )  with the C .

arbi t rary  and to determine the condit ions on C . needed for consistency.

Let

k i c .
h( x )  = TT(x (p .q . ) ‘) 

i 
. ( 3 . 3)

Then , using (2. 2) and p1 = p( l-p )~~

k

k c , ~~ c • k c~
~J m(f l n . ’/m 1 - Up . ’)

1
1 

1
1

k k k - i

~~ ick c . ~-J j +1

= ~.f~~(iT n~’/m i 
- p ( l-p )

1

k
There fore a sufficient condition for consistency is ~‘ c , = 0 and
k-I 1

IC = 1, and in this case
i+ l

- 1 2 -

~ 

- - 
_~_ .J~~ ~



~~rn (U n ,~ - ( l -p) ) ~ N( 0 , a-~ )

where a- 2 is determined in the usua l  way from (3.  3) using ( 2 . 2 ) .  It is

noted tha t  for c . = ( i  - ( k +l ) / 2 ) / ( k ( k
k~~

l)/ lz)  these two conditions are

sat is f ied , since clearly ~ c . = 0 and , let ting c = k(k
2

-l)/ l2

k- l  
= 

k - i  
i ( i+ l  - ~~~~ )/c = (

~~~ 
i
2 

- (k-l )/2  1)/c

= ( ( k - i ) ( k ) ( Zk - l ) / 6  - k(k
2 -i)/4 ) /C = 1

So, for th is  choice of c ., a-
2 

~~~~
‘ T~~

= ( a h ( x )  
, . . • ,  an~~~inc~ 

ah(~~) 
= (c 1/ x ) ~~~ x ( p 1

q~) 2 ) i
,

_ _ _  = c ( q
1
/p .) 2  q ( 3 . 4 )

Therefore , aft er some algebra , = q2 ( ~ c~ (q 1/p .) - 2 ~~~ c1c .)

A satisfactory estimator of is obtained by the same argument as

for the mo ment estimator , na mely ,

= ~~ n i/(l~~
(l

~~~~
)

where l-~ is now given by (3. 2). As before , let

g(x ) = x~~~~ .~~~/(1 - (~~~(~~~~~~q ) i ) k )

— 13-
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F h e n , by (2 .  2 ) ,

A

m w 2
~ m (— - 1) —~ N ( 0 , o~ )

rn m

2 Sq
where a- = ~~~~

‘ T~ , ~~~~
‘ = ( —  . . .  — )  and

m ~ äx~~’ ‘Sx k b

Sq 
( p q ) 2 + kc (q , / p ) 2  ( 1 ) k

I l - ( l - p )

k 2 2 k  k c
2 q k g  ~~~ 2 ~Therefore , after  some algebra , a- = + ( c . — -in k k Z  -~ i p ,l -q (l-q ) 1 1

2~~~ c c . ) .
. 1 )

1 < )  l ’ k  1
It should be noted that  the moment est imator  of 1 - p, (n

k /n l
) / -

is a special use of (3. 2) with c
1 

= _ 1/ ( k_ l ) ,  c . = 0 , 2 < i < k - i , and

= l/ ( k- l ),  since c~ + C
k 

= 0 and 
k~~l 

ic i ÷1 
(k-1)/ (k- 1)  = 1

The discussion of lack of fit is completely analogou s to the method

of moments , except that the partials are different but again obtained by

the chain rule using (3 .4 )  and (3. 5) and evaluated by a short computer

progra m. Specifically, let f . ( x )  x~(p .q , ) ~ - g(x)(1-h(x))(h(x))’~~

Then

Dg( xJ i-l  1-2 Sh(x)  i-l Sh(x )
= -(  ax . )~~ 

pq - (i-l)pq &x , )~~ 
+ q Sx .

3 3 J

for i # j, and if I = 1, (p 1
q .) 2  Is added to the above expression in

which J has been replaced by i .

-14-  
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4 . Numerical  Examples

The two method s of estimation discussed above are applied to the

data  in [4 ] and [5] . First , consider the rat data in [5] consisting of

k = 18 , n = ( 4 9 , 32 , 31, 34 , 16 , 33 , 22 , 27 , 17 , 19 , 18, 16 , 18, 12 , 14 , 12 , 17 , 7)

If a semi-log plot of n
1 

agains t i is made , it can be seen that there is

a large variabi l i ty  in the data , suggesting that the intervals are too short.

In addition , n 1 appe ars large a nd n 18 small compared to the line sug-

gested by the other poi nts , and thu s the mome nt method shou ld u nder-

estimate in , which Table 4 shows (This is also reflected in the large

calculated Z value). If however the data are grouped into 9 trapping

period s with n . = n + n , i = 1, 2 , . .  . , 9, the semi-log plot isgi 2 i - l  2i

much smoother and the moment method give s comparable point est imates to

the regressi on method , even though the variances are somewhat larger , as

is seen In Table 4. The maximum likelihood estimates and their estimated

standard deviations ( s .d .  ‘ s) given in [5] are iii 520 , 32. 9 and i~ = .07 56

00 933 (the estimated standard deviations for the estimates discussed here
p. 1

are u nderstood to be a -A /j
~~~~ 

fo r p and a-~~ ~ for ci ) . Note that in

te rms of p for the original data , th e probability of capture p ’ for the

gro uped data is p ’ = p f p( 1-p) .
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4 . Moment and Regress ion  Es t imates  for the Rat Data

Original  data  Grouped data

P arame te r

Moments Regression Moments Regression

P . 108 .07 37 .14 1 . 1 3 9

s.d. .02 12 .0100 .0260 .0186

in 452  527 52 9 533

s.d.  2 9 .4 37.0 51. 0 39. 0

Test of fit

Z 31. 9 17.4 2.00 2.08

d.f. 23.3 16. 1 11. 2 7.11

It is pointed out in [4] that removal trapping is sometimes the only

feasible method of estimating insect populations. The example discussed

there consists of the number of maccolaspis flavid a, n~, caught in k = 10

sweeping period s (the data in [4] were actually grouped) , with n =

(72, 63, 44, 32, 31, 23,17,18,11 ,13). Using a somewhat involved graphical

method , which does not yield any interval estimates , Menhinick obtains

212 and i~ = 3 5 9 .  The complete results for this example , for both

the moment and regression method , ar e given in Table 5.

-16-  
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5 . Moment and Regression Estimate s and Fitted Values

for the Insect Da ta

Parameter

Moments Regression

p .17 3 . 188

s.d. .0289 .0198

m 381 370

s .d .  24. 8 14.8

Test of fit

Z 4 . 59  3. 28

d.f. 12.3 8.29

A

Data Predicted Values n .
1

A A A p.

• n . i~I . -n . n n - n
1 1 1  1 I i

66 .0  -6. 0 69 .5  -2 . 5

6 3  5 4 . 5  -8 . 5 56. 5 - 6 . 5

44 45. 1 1.1 45. 9 1.9

32 3 7 . 3  5 . 3  3 7 . 3  5 . 3

31 3 0 . 8  - . 2  30. 3 - .7

23 25. 5 2.5 24.6 1.6

17 21 . 1 4 . 1  2 0 . 0  3 . 0

18 17.4 - . 6  1 6 . 2  - 1 . 7

11 14.4  3 . 4  1 3 . 2  2 . 2

13 1 1 . 9  - 1.  1 10 .7  — 2 . 3

-17 -



5. ( ~arn : 1ud in g 1~ -m i r k s

The purpose of t h i s  p m r  h a s  been to give two s t a t i s t i c a l l y  j u s t i f i a b l e

and computationally simple meth od s, the mo ment and the regression , as an

a l t e rna t ive  to the maximum likelihood appro ach which su f fe r s  from two

deficiencies : the s t a n d a r d  r e g u l a r i t y  cond i t i ons  for the  j o i n t  a s y m p t o t i c

normal i ty  of the m a x i m u m  likelihood e s t ima to r s  are not sa t i s f ied  and the

es t ima t ing  ecuat ions  are ei ther  implicit or require the use of charts .

Lis t ings  of short computer  programs that  ca lcu la te  either the moment

or regression estimates, standard deviations, and the adequacy of fit

s tat ist ics are available fro m the author.  The moment and regression es t imates

and their standard deviations are also readily computed by hand .

The method s discussed here should also be usefu l in other cases where

the data is rnultj no mlal and the standard maximum likelihood regulari ty

conditions are not satisfied.

- 18-
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Removal trapping , moment estimator , regression estimator , a symptotic
confidence intervals

So . A BSTR ~~~
T (Contf flu • on r.r.ra. .1 d. U n.cs ..m7 ‘d ld.nUfy by block numb.,)

Two method s, the generalized moment and the regression , both based
on the limiting distribution of the mult inomlal , are given for estimating the
parameters in the removal trapp ing method of estimating animal and tnsect
populations. Some finite sample size results are provided Indicating the speed
of convergence to the limiting distribution. Numerical examples are also
disc ussed.
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